Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Nutrients ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398824

RESUMO

Opuntia stricta var. dillenii fruit is a source of phytochemicals, such as betalains and phenolic compounds, which may play essential roles in health promotion. The aim of this research was to study the triglyceride-lowering effect of green extracts, obtained from Opuntia stricta var. dillenii fruit (whole fruit, pulp, peel, and industrial by-products (bagasse)) in 3T3-L1 mature adipocytes. The cells were treated on day 12, for 24 h, after the induction of differentiation with the extracts, at doses of 10, 25, 50, or 100 µg/mL. The expression of genes (PCR-RT) and proteins (Western blot) involved in fatty acid synthesis, fatty acid uptake, triglyceride assembly, and triglyceride mobilisation was determined. The fruit pulp extraction yielded the highest levels of betalains, whereas the peel displayed the greatest concentration of phenolic compounds. The extracts from whole fruit, peel and pulp were effective in reducing triglyceride accumulation at doses of 50 µg/mL or higher. Bagasse did not show this effect. The main mechanisms of action underpinning this outcome encompass a reduction in fatty acids synthesis (de novo lipogenesis), thus limiting their availability for triglyceride formation, alongside an increase in triglyceride mobilisation. However, their reliance is contingent upon the specific Opuntia extract.


Assuntos
Opuntia , Camundongos , Animais , Opuntia/química , Células 3T3-L1 , Fenóis/análise , Betalaínas , Frutas/química , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Adipócitos , Extratos Vegetais/química
2.
Food Res Int ; 179: 114011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342519

RESUMO

This comprehensive review article delves into the complex world of natural edible pigments, with a primary focus on their stability and the factors that influence them. The study primarily explores four classes of pigments: anthocyanins, betalains, chlorophylls and carotenoids by investigating both their intrinsic and extrinsic stability factors. The review examines factors affecting the stability of anthocyanins which act as intrinsic factors like their structure, intermolecular and intramolecular interactions, copigmentation, and self-association as well as extrinsic factors such as temperature, light exposure, metal ions, and enzymatic activities. The scrutiny extends to betalains which are nitrogen-based pigments, and delves into intrinsic factors like chemical composition and glycosylation, as well as extrinsic factors like temperature, light exposure, and oxygen levels affecting for their stability. Carotenoids are analyzed concerning their intrinsic and extrinsic stability factors. The article emphasizes the role of chemical structure, isomerization, and copigmentation as intrinsic factors and discusses how light, temperature, oxygen, and moisture levels influence carotenoid stability. The impacts of food processing methods on carotenoid preservation are explored by offering guidance on maximizing retention and nutritional value. Chlorophyll is examined for its sensitivity to external factors like light, temperature, oxygen exposure, pH, metal ions, enzymatic actions, and the food matrix composition. In conclusion, this review article provides a comprehensive exploration of the stability of natural edible pigments, highlighting the intricate interplay of intrinsic and extrinsic factors. In addition, it is important to note that all the references cited in this review article are within the past five years, ensuring the most up-to-date and relevant sources have been considered in the analysis.


Assuntos
Antocianinas , Alimentos Orgânicos , Antocianinas/análise , Alimentos Orgânicos/análise , Carotenoides/química , Betalaínas/química , Clorofila/química , Íons , Oxigênio
3.
J Agric Food Chem ; 72(6): 2943-2962, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301126

RESUMO

The antioxidant and anti-inflammatory activities of acylated and decarboxylated gomphrenins, as well as Basella alba L. fruit extract, were investigated in relation to gomphrenin, known for its high biological potential. The most abundant natural acylated gomphrenins, namely, 6'-O-E-caffeoyl-gomphrenin (malabarin) and 6'-O-E-4-coumaroyl-gomphrenin (globosin), were isolated from B. alba extract for the studies. In addition, controlled thermal decarboxylation of gomphrenin in the purified B. alba extract at 65-75 °C resulted in the formation of the most prevalent decarboxylated products, including 17-decarboxy-gomphrenin and 2,17-bidecarboxy-gomphrenin, along with their isoforms. The structures of the decarboxylated pigments were confirmed by NMR analyses. Exploring the matrix effect on pigment reactivity revealed a tremendous increase in the stability of all betacyanins after the initial stage of extract purification using a cation exchanger under various conditions. This indicates the removal of a substantial portion of the unfavorable matrix from the extract, which presumably contains reactive species that could otherwise degrade the pigments. Furthermore, the high concentration of citrates played a significant role in favoring the formation of 2-decarboxy-gomphrenin to a considerable extent. In vitro screening experiments revealed that the tested compounds demonstrated strong anti-inflammatory properties in lipopolysaccharide (LPS)-activated human macrophages. This effect encompassed the selective inhibition of cytokine and chemokine release from activated macrophages, modulation of the chemotactic activity of immune cells, and the regulation of tissue remodeling mediators' release.


Assuntos
Betacianinas , Caryophyllales , Humanos , Betacianinas/química , Spinacia oleracea , Frutas/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Betalaínas/farmacologia , Betalaínas/química
4.
Nutr. clín. diet. hosp ; 44(1): 279-289, Feb. 2024. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-231324

RESUMO

Objetivo: En este estudio se plantea la evaluación de sus propiedades antioxidantes de varios productos con etiquetado “orgánico” elaborados con matrices alimentarias de cultivos andinos.Materiales y métodos: Las diferentes muestras con etiquetado “orgánico” fueron evaluadas en función a sus propiedades antioxidantes y evaluadas mediante métodos espectrofotométricos. Resultados: Los resultados de este estudio muestran que las semillas seguido de las mezclas de harinas (PM1 y PM3) presentan altos contenidos de proteínas, mientras que la semilla de chía (S2) fueron ricos en lípidos y cenizas. Mejores contenidos de polifenoles, flavonoides, flavanoles, flavonoles y antocianinas fueron observados en las mezclas de harinas (PM1 a PM5), estas mezclas fueron obtenidas a partir de maca, quinua, maíz morado, cacao, y lúcuma, mientras que las semillas como quinua perlada roja, amaranto, quinua roja, quinua negra, y quinua tricolor contribuyeron con betaxantinas y betacianinas. El orden de clasificación de los productos alimenticios en función del valor antioxidante y composición nutricional ubicó en primer lugar a PM2 (quinua, cacao criollo, maíz morado, algarrobo, canela), segundo lugar para maíz morado y en tercer lugar para flakes.Conclusiones: Los hallazgos de este estudio permitieron establecer que las mezclas de harinas con etiquetado “orgánico” mostraron un alto potencial antioxidante.(AU)


Objective: In this study, the evaluation of the antioxidantproperties of several products labeled “organic” made withfood matrices of Andean crops is proposed.Material and methods: A total of 23 samples with “or-ganic” labelling based on Andean crops were evaluated withrespect to their nutritional composition, antioxidant properties(total polyphenols, total flavonoids, anthocyanins, betalains,and DPPH radical scavenging activity).Result: The results of this study show that the seeds (S1to S7) followed by the flour mixtures (PM1 and PM3) presenthigh protein contents, while the chia seed (S2) was rich inlipids and ashes. Regarding polyphenols, flavonoids, fla-vanols, flavonols and anthocyanins, it was observed that theflour mixtures (PM1 to PM5) presented better contents, these mixtures were obtained from maca, quinoa, purple corn, co-coa, and lucuma, while the seeds as red pearl quinoa, ama-ranth, red quinoa, black quinoa, and tri-color quinoa con-tributed betaxanthins and betacyanins. The order ofclassification of the food products with the “organic” labelbased on the antioxidant value and nutritional compositionplaced the PM2 sample in first place (quinoa, Criollo cocoa,purple corn, carob powder, cinnamon), followed by purplecorn flour (P1) and in third place for flakes (FL). Conclusion: The findings of this study allowed us to es-tablish that the flour mixtures labeled “organic” showedgreater DPPH radical scavenging activity.(AU)


Assuntos
Humanos , Masculino , Feminino , Alimentos Orgânicos , Cultivos Agrícolas , Antioxidantes , Rotulagem de Alimentos , Betalaínas , Polifenóis , Antocianinas
5.
Plant Biotechnol J ; 22(5): 1312-1324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213076

RESUMO

Quinoa is an agriculturally important crop species originally domesticated in the Andes of central South America. One of its most important phenotypic traits is seed colour. Seed colour variation is determined by contrasting abundance of betalains, a class of strong antioxidant and free radicals scavenging colour pigments only found in plants of the order Caryophyllales. However, the genetic basis for these pigments in seeds remains to be identified. Here we demonstrate the application of machine learning (extreme gradient boosting) to identify genetic variants predictive of seed colour. We show that extreme gradient boosting outperforms the classical genome-wide association approach. We provide re-sequencing and phenotypic data for 156 South American quinoa accessions and identify candidate genes potentially controlling betalain content in quinoa seeds. Genes identified include novel cytochrome P450 genes and known members of the betalain synthesis pathway, as well as genes annotated as being involved in seed development. Our work showcases the power of modern machine learning methods to extract biologically meaningful information from large sequencing data sets.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Cor , Estudo de Associação Genômica Ampla , Betalaínas/metabolismo , Genômica , Sementes/genética
6.
Plant Foods Hum Nutr ; 79(1): 143-150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206481

RESUMO

Opuntia ficus-indica fruits have been widely used due to their nutritional composition and beneficial effects on health, particularly against chronic diseases such as diabetes, obesity, cardiovascular diseases and cancer, among others. In recent years, prickly pear peel and pulp extracts have been characterised, and a high number of bioactive compounds have been identified. This study aimed to analyse the triglyceride-lowering effect of prickly pear peel and pulp extracts obtained from fruits of three varieties (Pelota, Sanguinos, and Colorada) in 3T3-L1 maturing and mature adipocytes. At a concentration of 50 µg/mL, peel extracts from Colorada reduced triglyceride accumulation in pre-adipocytes and mature adipocytes. Additionally, at 25 µg/mL, Pelota peel extract decreased triglyceride content in mature adipocytes. Moreover, maturing pre-adipocytes treated with 50 and 25 µg/mL of Sanguinos pulp extract showed a reduction of triglyceride accumulation. In addition, the lipid-lowering effect of the main individual betalain and phenolic compounds standards were assayed. Piscidic acid and isorhamnetin glycoside (IG2), found in Colorada peel extract, were identified as the bioactive compounds that could contribute more notably to the triglyceride-lowering effect of the extract. Thus, the betalain and phenolic-rich extracts from Opuntia ficus indica fruits may serve as an effective tool in obesity management.


Assuntos
Opuntia , Camundongos , Animais , Frutas/química , Células 3T3-L1 , Fenóis/análise , Betalaínas , Extratos Vegetais/farmacologia , Triglicerídeos , Lipídeos
7.
New Phytol ; 241(1): 471-489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897060

RESUMO

In this study, we investigate the genetic mechanisms responsible for the loss of anthocyanins in betalain-pigmented Caryophyllales, considering our hypothesis of multiple transitions to betalain pigmentation. Utilizing transcriptomic and genomic datasets across 357 species and 31 families, we scrutinize 18 flavonoid pathway genes and six regulatory genes spanning four transitions to betalain pigmentation. We examined evidence for hypotheses of wholesale gene loss, modified gene function, altered gene expression, and degeneration of the MBW (MYB-bHLH-WD40) trasnscription factor complex, within betalain-pigmented lineages. Our analyses reveal that most flavonoid synthesis genes remain conserved in betalain-pigmented lineages, with the notable exception of TT19 orthologs, essential for the final step in anthocyanidin synthesis, which appear to have been repeatedly and entirely lost. Additional late-stage flavonoid pathway genes upstream of TT19 also manifest strikingly reduced expression in betalain-pigmented species. Additionally, we find repeated loss and alteration in the MBW transcription complex essential for canonical anthocyanin synthesis. Consequently, the loss and exclusion of anthocyanins in betalain-pigmented species appear to be orchestrated through several mechanisms: loss of a key enzyme, downregulation of synthesis genes, and degeneration of regulatory complexes. These changes have occurred iteratively in Caryophyllales, often coinciding with evolutionary transitions to betalain pigmentation.


Assuntos
Antocianinas , Caryophyllales , Humanos , Antocianinas/metabolismo , Betalaínas , Caryophyllales/genética , Evolução Biológica , Transcriptoma , Regulação da Expressão Gênica de Plantas
8.
Ecotoxicol Environ Saf ; 267: 115653, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948939

RESUMO

Red pitaya, the representative tropical and subtropical fruit, is vulnerable to quality deterioration due to climate or agronomic measures. Nano-selenium (Nano-Se) has shown positive effects on crop biofortification in favour of reversing this situation. In this study, Se could be enriched efficiently in red pitayas via root and foliar application by Nano-Se, which induced higher phenolic acids (16.9-94.2%), total phenols (15.7%), total flavonoids (29.5%) and betacyanins (34.1%) accumulation in flesh. Richer antioxidative features including activities of SOD (25.2%), CAT (33.8%), POD (77.2%), and levels of AsA (25.7%) and DPPH (14.7%) were obtained in Nano-Se-treated pitayas as well as in their 4-8 days shelf-life. The non-targeted metabolomics indicated a boost in amino acids, resulting in the stimulation of phenylpropanoid and betalain biosynthesis. In conclusion, the mechanism of Nano-Se biofortification for red pitaya might be fortifying pigment, as well as the enzymatic and non-enzymatic antioxidant substances formation by regulating primary and secondary metabolism facilitated by Se accumulation.


Assuntos
Cactaceae , Selênio , Betalaínas , Biofortificação , Frutas , Metabolismo Secundário , Antioxidantes
9.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895092

RESUMO

Reactive oxygen species and reactive nitrogen species (RNS) are damaging for many biomolecules. Peroxynitrite (ONOO-) is the most toxic molecular species among RNS. Betalains are known to possess ONOO- scavenging ability. Betanin, a betalain isolated from red beet, possesses antioxidant, anti-inflammatory, and antitumor activities; however, detailed studies of this isolated pigment have not been conducted, owing to its instability under physiological conditions. This study aimed to isolate highly purified betanin from red beetroots using an improved purification method involving deproteinization and citric acid co-precipitation and evaluated its antioxidant activities. The purified betanin thus obtained had a significantly lower isobetanin content than the commercially available betanin dyes. The antioxidant activity of purified betanin examined in the 2,2-diphenyl-1-picrylhydrazyl assay, the direct ONOO- reaction, ONOO--dependent DNA damage, and lipid peroxidation reactions revealed that betanin possessed higher antioxidant capacity than general antioxidants such as ascorbic acid and quercetin. Furthermore, betanin showed indirect and direct cytoprotective effects against H2O2 and ONOO- cytotoxicity, respectively, in cultured mouse fibroblasts. To the best of our knowledge, this is the first study to demonstrate the cytoprotective effects of betanin against ONOO- toxicity. The highly purified betanin obtained in this study will aid in further exploring its physiological functions.


Assuntos
Antioxidantes , Beta vulgaris , Animais , Camundongos , Antioxidantes/farmacologia , Betacianinas/farmacologia , Ácido Peroxinitroso , Peróxido de Hidrogênio , Betalaínas
10.
Curr Nutr Rep ; 12(4): 778-787, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37824059

RESUMO

PURPOSE OF REVIEW: Beetroot juice is a popular natural food supplement commonly consumed for its health and ergogenic benefits. It contains an abundance of phytochemical compounds, which have been shown to enhance sports endurance and recovery. Among them, nitrate is well-studied and known for improving performance during exercise. On the other hand, betalains, the bioactive pigment, have shown various biological activities including antioxidant, anti-inflammatory, and anti-hypertensive, which may improve exercise performance and post-exercise recovery. Additionally, free radical scavenging activities of betalains could increase nitric oxide availability in the blood, thereby improving blood flow and oxygen supply during strenuous exercise. This review article provides a critical discussion of the non-pathological conditions induced by prolonged or strenuous exercise and betalains' potential in reducing such conditions including muscle damage, inflammation, and fatigue. Additionally, the real-time application of betalains as an ergogenic compound in competitive athletes has been discussed. Finally, future directions and conclusions on the potential of betalains as a natural ergogenic aid in sport endurance are outlined. RECENT FINDINGS: Betalains in beetroot are the major water-soluble nitrogen-containing pigment possessing high antioxidant, anti-inflammatory, and anti-fatigue activities. Betalain supplementation could alleviate exercise-induced oxidative stress, inflammation, and fatigue in competitive athletes. Betalains have the potential to become a natural ergogenic aid or nutraceutical compound for sports people during exercise and competitive performance.


Assuntos
Antioxidantes , Betalaínas , Humanos , Antioxidantes/farmacologia , Betalaínas/farmacologia , Fadiga/tratamento farmacológico , Estresse Oxidativo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia
11.
Molecules ; 28(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37687234

RESUMO

This research compares the extraction of betalains (betacyanin and betaxanthin) and total phenolic content using citric acid and aqueous-ethanol solutions. The aim is to find an environmentally sustainable alternative solvent for extracting these compounds from dried beetroot powder. Using citric acid solution as a solvent offers several benefits over ethanol. Citric acid is a weak organic acid found naturally in citrus fruits, making it a safe and environmentally friendly choice for certain extraction processes. Moreover, the use of citric acid as solvent offers biodegradability, non-toxicity, non-flammability, and is cost effective. A full factorial design and response surface methodology (RSM) were employed to assess the effects of extraction parameters (extraction time (5-30 min), extraction temperature (20, 30, 40 °C), pH of citric acid solution (3, 4, 5) and ethanol concentration (10, 20, 30% v/v)). The yield was determined spectrophotometrically and expressed as mg/g of dry powder. The results showed that citric acid solution yielded 85-90% of the ethanolic extract under identical conditions. The maximum yields of betacyanin, betaxanthin, and total phenolic content in citric acid solution were 3.98 ± 0.21 mg/g dry powder, 3.64 ± 0.26 mg/g dry powder, and 8.28 ± 0.34 mg/g dry powder, respectively, while aqueous-ethanol yielded 4.38 ± 0.17 mg/g dry powder, 3.95 ± 0.22 mg/g dry powder, and 8.45 ± 0.45 mg/g dry powder. Optimisation resulted in maximum extraction yields of 90% for betalains and 85% for total phenolic content. The study demonstrates the potential of citric acid as a viable alternative to polar organic solvents for extracting phytochemicals from plant material, providing comparable results to aqueous-ethanol. Artificial Neural Network (ANN) models outperformed RSM in predicting extraction yields. Overall, this research highlights the importance of exploring bio-solvents to enhance the environmental sustainability of phytochemical extraction.


Assuntos
Betalaínas , Etanol , Betacianinas , Pós , Betaxantinas , Solventes , Fenóis , Ácido Cítrico
12.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570597

RESUMO

Amaranth plants contain abundant betalains and flavonoids. Anthocyanins are important flavonoids; however, they cannot coexist in the same plant with betalains. Blue light influences metabolite synthesis and hypocotyl elongation; accordingly, analyses of its effects on betalain and flavonoid biosynthesis in Amaranthus tricolor may provide insight into the distribution of these plant pigments. We analyzed the betalain and flavonoid content and transcriptome profiles in amaranth hypocotyls under blue light and dark conditions. Furthermore, we analyzed the expression patterns of key genes related to betalains and flavonoids. Amaranth hypocotyls were shorter and redder and showed higher betalain and flavonoid content under blue light than in dark conditions. Key genes involved in the synthesis of betalains and flavonoids were upregulated under blue light. The gene encoding DELLA was also upregulated. These results suggest that blue light favors the synthesis of both betalains and flavonoids via the suppression of bioactive gibberellin and the promotion of DELLA protein accumulation, which also suppresses hypocotyl elongation. The metabolite profiles differed between plants under blue light and dark conditions. These findings improve our understanding of the environmental cues and molecular mechanisms underlying pigment variation in Amaranthus.


Assuntos
Amaranthus , Betalaínas , Flavonoides/metabolismo , Transcriptoma , Antocianinas/metabolismo , Amaranthus/genética , Amaranthus/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Plantas/metabolismo
13.
Plant Signal Behav ; 18(1): 2250891, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37616475

RESUMO

Betalains provide Chenopodium quinoa bright color, and the key enzyme genes for betalain biosynthesis include CYP76AD, DODA, and GTs. In this study, 59 CqCYP76AD, CqDODA and CqGTs genes in quinoa were identified and characterized by gene structural characteristics, phylogenetic relationships and gene expression patterns. The CqCYP76AD genes were divided into ɑ, ß and γ types, CqDODA into ɑ and ß types, and CqGTs into CqcDOPA5GT, CqB5GT and CqB6GT types according to phylogenetic relationships. The analysis of co-linearity identified eight pairs of duplicated genes which were subjected to purifying selection during evolution. CqCYP76AD and CqDODA, as well as CqcDOPA5GT and CqB5GT may have been evolutionarily linked in genetic inheritance, based on gene location and gene structure study. The tissue expression specificity of CqCYP76AD, CqDODA, and CqGTs genes in response to seed germination and cold stress was studied by RNA-Seq data. The genes CqCYP76AD, CqDODA, and CqGTs were involved in betalain biosynthesis and cold stress. CqCYP76AD, CqDODA, CqcDOPA5GT and CqB5GT gene sequences were consistent in the eight quinoa samples and showed significant variations in expression. In contrast, the inconsistency between changes in gene expression and betalain accumulation indicates that other factors may influence betalain biosynthesis in quinoa. This study offers the theoretical basis for the roles of the CqCYP76AD, CqDODA, and CqGTs genes in betalain biosynthesis and cold stress in quinoa, as well as a guide for the full utilization of betalains in quinoa plants.


Assuntos
Chenopodium quinoa , Resposta ao Choque Frio , Chenopodium quinoa/genética , Germinação , Filogenia , Sementes/genética , Betalaínas
14.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607101

RESUMO

A novel in planta gene transformation method was developed for bamboo, which avoids the need for time-consuming and labor-intensive callus induction and regeneration processes. This method involves Agrobacterium-mediated gene expression via wounding and vacuum for bamboo seedlings. It successfully demonstrated the expression of exogenous genes, such as the RUBY reporter and Cas9 gene, in bamboo leaves. The highest transformation efficiency for the accumulation of betalain in RUBY seedlings was achieved using the GV3101 strain, with a percentage of 85.2% after infection. Although the foreign DNA did not integrate into the bamboo genome, the method was efficient in expressing the exogenous genes. Furthermore, a gene editing system has also been developed with a native reporter using this method, from which an in situ mutant generated by the edited bamboo violaxanthin de-epoxidase gene (PeVDE) in bamboo leaves, with a mutation rate of 17.33%. The mutation of PeVDE resulted in decreased non-photochemical quenching (NPQ) values under high light, which can be accurately detected by a fluorometer. This makes the edited PeVDE a potential native reporter for both exogenous and endogenous genes in bamboo. With the reporter of PeVDE, a cinnamoyl-CoA reductase gene was successfully edited with a mutation rate of 8.3%. This operation avoids the process of tissue culture or callus induction, which is quick and efficient for expressing exogenous genes and endogenous gene editing in bamboo. This method can improve the efficiency of gene function verification and will help reveal the molecular mechanisms of key metabolic pathways in bamboo.


Assuntos
Agrobacterium , Edição de Genes , Betalaínas , Técnicas Genéticas , Expressão Gênica
15.
Proc Natl Acad Sci U S A ; 120(33): e2306322120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549256

RESUMO

Plants produce various pigments that not only appear as attractive colors but also provide valuable resources in applications in daily life and scientific research. Biosynthesis pathways for these natural plant pigments are well studied, and most have multiple enzymes that vary among plant species. However, adapting these pathways to animals remains a challenge. Here, we describe successful biosynthesis of betalains, water-soluble pigments found only in a single plant order, Caryophyllales, in transgenic silkworms by coexpressing three betalain synthesis genes, cytochrome P450 enzyme CYP76AD1, DOPA 4,5-dioxygenase, and betanidin 5-O-glucosyltransferase. Betalains can be synthesized in various tissues under the control of the ubiquitous IE1 promoter but accumulate mainly in the hemolymph with yields as high as 274 µg/ml. Additionally, transformed larvae and pupae show a strong red color easily distinguishable from wild-type animals. In experiments in which expression is controlled by the promoter of silk gland-specific gene, fibroin heavy-chain, betalains are found predominantly in the silk glands and can be secreted into cocoons through spinning. Betalains in transformed cocoons are easily recovered from cocoon shells in water with average yields reaching 14.4 µg/mg. These data provide evidence that insects can synthesize natural plant pigments through a complex, multiple enzyme-mediated synthesis pathway. Such pigments also can serve as dominant visible markers in insect transgenesis applications. This study provides an approach to producing valuable plant-derived compounds by using genetically engineered silkworms as a bioreactor.


Assuntos
Bombyx , Engenharia Genética , Animais Geneticamente Modificados , Animais , Pigmentos Biológicos/biossíntese , Betalaínas/biossíntese , Betalaínas/química , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cor
16.
Environ Sci Pollut Res Int ; 30(40): 92084-92094, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37479940

RESUMO

Green products such as plant pigments in all filed are gaining fame globally due to their excellent ayurvedic and biological characteristics. In this study, microwave rays have been employed for the isolation of colorants from Anar Phali while bio-mordant have been included to get color-fast shades. The colorant was isolated in an acidic medium before and after microwave rays for 2 min. For getting darker shades with different tints, sustainable chemical and plant-based extracts as bio-mordant have been employed before and after bio coloration of wool yarn at given conditions. CIE Lab system computed in Colori-spectrophotometer (CS-410) was used to observe the change in color depth and tonal variation of dyed fabrics, and ISO standard methods have been employed to rate the colorfastness to light, washing, and rubbing at grey scale. It is concluded that microwave rays have an excellent sustainable efficacy to isolate colorant from Anar Phali powder for wool dyeing, whereas the addition of bio-mordants has made the process more sustainable and eco-friendly.


Assuntos
Betalaínas , Opuntia , Animais , Corantes , Extratos Vegetais ,
17.
Mol Plant Pathol ; 24(10): 1319-1329, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37410356

RESUMO

In the field of plant virology, the usage of reverse genetic systems has been reported for multiple purposes. One is understanding virus-host interaction by labelling viral cDNA clones with fluorescent protein genes to allow visual virus tracking throughout a plant, albeit this visualization depends on technical devices. Here we report the first construction of an infectious cDNA full-length clone of beet mosaic virus (BtMV) that can be efficiently used for Agrobacterium-mediated leaf inoculation with high infection rate in Beta vulgaris, being indistinguishable from the natural virus isolate regarding symptom development and vector transmission. Furthermore, the BtMV clone was tagged with the genes for the monomeric red fluorescent protein or the Beta vulgaris BvMYB1 transcription factor, which activates the betalain biosynthesis pathway. The heterologous expression of BvMYB1 results in activation of betalain biosynthesis genes in planta, allowing visualization of the systemic BtMV spread with the naked eye as red pigmentation emerging throughout beet leaves. In the case of BtMV, the BvMYB1 marker system is stable over multiple mechanical host passages, allows qualitative as well as quantitative virus detection and offers an excellent opportunity to label viruses in plants of the order Caryophyllales, allowing an in-depth investigation of virus-host interactions on the whole plant level.


Assuntos
Beta vulgaris , Potyvirus , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Betalaínas , Beta vulgaris/metabolismo , DNA Complementar/genética , Potyvirus/genética , Doenças das Plantas
18.
J Food Sci ; 88(8): 3422-3434, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326342

RESUMO

Garambullo (Myrtillocactus geometrizans) is endemic in México, and although popularly consumed locally, its nutritional characteristics and value have not been studied in details. The objective of this work was to investigate the bioactive compounds and antioxidant activity in garambullo fruit from different sites at three ripening stages. Fruit from the three ripening stages (red, purple, and dark purple) were investigated for their physicochemical characteristics, hydrophilic (phenolic compounds, betalains, and ascorbic acid), and lipophilic (carotenoids, tocopherols, and fatty acids) bioactive compounds, using spectrophotometry, gas chromatography (GC-FID), and high-pressure liquid chromatography coupled to mass spectrometry (HPLC/DAD-ESI-MS). The antioxidant capacity was measured with the 2,2'-diphenyl-1-picrylhydrazyl and the ferric-ion-reducing antioxidant power assays. The color components of the fruit, chroma and a* values increased, whereas lightness (L*) and b* significantly decreased during ripening. Five betacyanins and four betaxanthins were tentatively identified with HPLC/DAD-ESI-MS, and betacyanins were more abundant than betaxanthins. Betalains content and antioxidant capacity of hydrophilic extracts significantly increased during ripening. Ten phenolic compounds were identified, with ferulic acid being the most abundant. Tocopherols were low (0.023-0.033 mg/100 g fw). Five fatty acids were abundant, and linoleic acid was the most important. Phenolic compounds, ascorbic acid, total carotenoids, and fatty acids decreased during fruit ripening. Garambullo fruit is rich in phytochemical compounds of importance for human nutrition and health. PRACTICAL APPLICATION: The physicochemical and bioactive compounds characterization in garambullo fruit is important to establish maturation and harvesting indices, postharvest strategies to preserve fruit quality and prolong postharvest life, promote the consumption and utilization of the fruit, and the designing of proper functional foods. In addition, the knowledge on the bioactive components might be useful to include this fruit in personalized nutritional approaches for patients with risks of certain chronic diseases. The methodology used in this study could be useful for the study of other fruits, especially those from the Cactaceae family.


Assuntos
Antioxidantes , Cactaceae , Humanos , Antioxidantes/análise , Frutas/química , Betacianinas/análise , Betaxantinas/análise , Cromatografia Gasosa-Espectrometria de Massas , Cactaceae/química , Betalaínas/análise , Ácido Ascórbico/análise , Fenóis/análise , Tocoferóis/análise , Carotenoides/análise , Extratos Vegetais/química
19.
Biosensors (Basel) ; 13(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37232915

RESUMO

Natural pigments occur in plants as secondary metabolites and have been used as safe colourants in food. Studies have reported that their unstable colour intensity might be related to metal ion interaction, which leads to the formation of metal-pigment complexes. This underlines the need for further investigations on the use of natural pigments in metal detection using colorimetric methods, since metals are important elements and can be hazardous when present in large amounts. This review aimed to discuss the use of natural pigments (mainly betalains, anthocyanins, curcuminoids, carotenoids, and chlorophyll) as reagents for portable metal detection based on their limits of detection, to determine which pigment is best for certain metals. Colorimetric-related articles over the last decade were gathered, including those involving methodological modifications, sensor developments, and a general overview. When considering sensitivity and portability, the results revealed that betalains are best applied for copper, using a smartphone-assisted sensor; curcuminoids are best applied for lead, using a curcumin nanofiber; and anthocyanin is best applied for mercury, using anthocyanin hydrogel. This provides a new perspective on the use of colour instability for the detection of metals with modern sensor developments. In addition, a coloured sheet representing metal concentrations may be useful as a standard to support on-site detection with trials on masking agents to improve selectivity.


Assuntos
Antocianinas , Carotenoides , Antocianinas/metabolismo , Cor , Carotenoides/metabolismo , Betalaínas/metabolismo , Plantas , Metais
20.
New Phytol ; 239(6): 2265-2276, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243529

RESUMO

This work revisits a publication by Bean et al. (2018) that reports seven amino acid substitutions are essential for the evolution of l-DOPA 4,5-dioxygenase (DODA) activity in Caryophyllales. In this study, we explore several concerns which led us to replicate the analyses of Bean et al. (2018). Our comparative analyses, with structural modelling, implicate numerous residues additional to those identified by Bean et al. (2018), with many of these additional residues occurring around the active site of BvDODAα1. We therefore replicated the analyses of Bean et al. (2018) to re-observe the effect of their original seven residue substitutions in a BvDODAα2 background, that is the BvDODAα2-mut3 variant. Multiple in vivo assays, in both Saccharomyces cerevisiae and Nicotiana benthamiana, did not result in visible DODA activity in BvDODAα2-mut3, with betalain production always 10-fold below BvDODAα1. In vitro assays also revealed substantial differences in both catalytic activity and pH optima between BvDODAα1, BvDODAα2 and BvDODAα2-mut3 proteins, explaining their differing performance in vivo. In summary, we were unable to replicate the in vivo analyses of Bean et al. (2018), and our quantitative in vivo and in vitro analyses suggest a minimal effect of these seven residues in altering catalytic activity of BvDODAα2. We conclude that the evolutionary pathway to high DODA activity is substantially more complex than implied by Bean et al. (2018).


Assuntos
Betalaínas , Dioxigenases , Levodopa , Mutação com Ganho de Função , Substituição de Aminoácidos , Filogenia , Dioxigenases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Pigmentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...